Package: eyetrackingR 0.2.1

eyetrackingR: Eye-Tracking Data Analysis

Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.

Authors:Samuel Forbes [aut, cre], Jacob Dink [aut], Brock Ferguson [aut]

eyetrackingR_0.2.1.tar.gz
eyetrackingR_0.2.1.zip(r-4.5)eyetrackingR_0.2.1.zip(r-4.4)eyetrackingR_0.2.1.zip(r-4.3)
eyetrackingR_0.2.1.tgz(r-4.4-any)eyetrackingR_0.2.1.tgz(r-4.3-any)
eyetrackingR_0.2.1.tar.gz(r-4.5-noble)eyetrackingR_0.2.1.tar.gz(r-4.4-noble)
eyetrackingR_0.2.1.tgz(r-4.4-emscripten)eyetrackingR_0.2.1.tgz(r-4.3-emscripten)
eyetrackingR.pdf |eyetrackingR.html
eyetrackingR/json (API)
NEWS

# Install 'eyetrackingR' in R:
install.packages('eyetrackingR', repos = c('https://samhforbes.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/samhforbes/eyetrackingr/issues

Datasets:

On CRAN:

7.82 score 21 stars 60 scripts 401 downloads 7 mentions 18 exports 50 dependencies

Last updated 1 years agofrom:9b6443585d. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:add_aoianalyze_boot_splinesanalyze_time_binsanalyze_time_clustersclean_by_tracklossdescribe_dataget_time_clustersmake_boot_splines_datamake_eyetrackingr_datamake_onset_datamake_switch_datamake_time_cluster_datamake_time_sequence_datamake_time_window_datareclasssimulate_eyetrackingr_datasubset_by_windowtrackloss_analysis

Dependencies:backportsbroombroom.mixedclicodacodetoolscolorspacecpp11digestdplyrfansifarverforcatsfurrrfuturegenericsggplot2globalsgluegtableisobandlabelinglatticelazyevallifecyclelistenvmagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrzoo

Estimating time windows of divergence

Rendered fromdivergence_vignette.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-14
Started: 2015-10-07

Performing a growth curve analysis using eyetrackingR

Rendered fromgrowth_curve_analysis_vignette.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-14
Started: 2015-10-07

Performing a window analysis using eyetrackingR

Rendered fromwindow_analysis_vignette.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-14
Started: 2015-10-07

Performing an onset-contingent analysis using eyetrackingR

Rendered fromonset_contingent_analysis_vignette.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-14
Started: 2015-10-07

Preparing your data for use with eyetrackingR

Rendered frompreparing_your_data_vignette.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-14
Started: 2015-10-07

Readme and manuals

Help Manual

Help pageTopics
Add an area-of-interest to your dataset, based on x-y coordinates and the AOI rectangle.add_aoi
Estimate confidence intervals for bootstrapped splines dataanalyze_boot_splines analyze_boot_splines.boot_splines_data
analyze_time_bins()analyze_time_bins analyze_time_bins.time_sequence_data
Bootstrap analysis of time-clusters.analyze_time_clusters analyze_time_clusters.time_cluster_data
Clean data by removing high-trackloss trials/subjects.clean_by_trackloss
Describe datasetdescribe_data
eyetrackingR: A package for cleaning, analyzing, and visualizing eye-tracking datasetseyetrackingR
Get information about the clusters in a cluster-analysisget_time_clusters get_time_clusters.cluster_analysis get_time_clusters.time_cluster_data
Bootstrap resample splines for time-series data.make_boot_splines_data make_boot_splines_data.time_sequence_data
Convert raw data for use in eyetrackingRmake_eyetrackingr_data
Make onset-contingent data.make_onset_data
Summarize data into time-to-switch from initial AOI.make_switch_data make_switch_data.onset_data
Make data for cluster analysis.make_time_cluster_data make_time_cluster_data.time_sequence_data
make_time_sequence_data()make_time_sequence_data
Make a dataset collapsing over a time-windowmake_time_window_data
Plot test-statistic for each time-bin in a time-seriesplot.bin_analysis
Plot differences in bootstrapped-splines dataplot.boot_splines_analysis
Plot bootstrapped-splines dataplot.boot_splines_data
Visualize the results of a cluster analysis.plot.cluster_analysis
Plot some summarized data from eyetrackingRplot.eyetrackingR_data_summary
Plot onset-contingent dataplot.onset_data
Plot mean switch-from-initial-AOI times.plot.switch_data
Plot test-statistic for each time-bin in a time-series, highlight clusters. Plot time_cluster_data, highlights clusters of above-threshold time-bins.plot.time_cluster_data
Plot time-sequence dataplot.time_sequence_data
Plot a time-window datasetplot.time_window_data
Print Method for Cluster Analysisprint.cluster_analysis
Add the original class/attributes back onto result (usually of dplyr operation)reclass reclass.eyetrackingR_df
Simulate an eyetrackingR datasetsimulate_eyetrackingr_data
Extract a subset of the dataset within a time-window in each trial.subset_by_window
Summary Method for Time-bin Analysissummary.bin_analysis
Summary Method for Bootstrapped Splines Analysissummary.boot_splines_analysis
Summary Method for Cluster Analysissummary.cluster_analysis
Summary Method for Cluster Analysissummary.time_cluster_data
Analyze trackloss.trackloss_analysis
Data collected in an infant eyetracking studyword_recognition